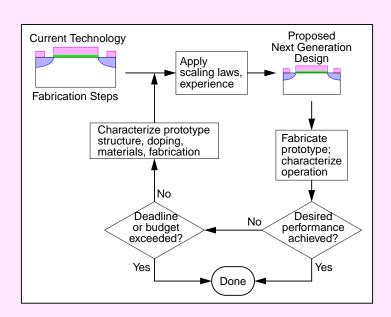
Predictive Models for Semiconductor Device Design and Processing (TCAD Challenges and Solutions)

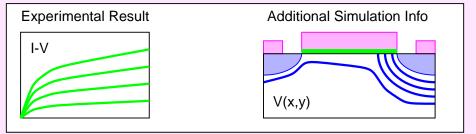
Bryan Biegel (MRJ Inc., NAS Division, NASA)

(for Meyya Meyyappan, Project Manager, NanoScience IPT)


NASA Ames Research Center

Outline

- Background
- Device and Process Physics
- TCAD Software Development
- Computational Power
- TCAD Software Verification


(http://www.ipt.arc.nasa.gov)

Traditional Approach to Device R&D: Scaling Laws/Experimental Iteration

Advantages of TCAD Over Scaling Laws/Experimental Iteration

- Much less expensive
- Investigation of innovative ideas (e.g., quantum devices)
- View of internal processes
- · Investigation of individual physical effects
- Ultimate control of materials, structures, environment, tests, etc.

Why is TCAD not the focus in device technology advancement?

TCAD Tools: Where We Stand

Existing TCAD capabilities:

- 3-D process and device simulation
- Intuitive graphical user interface (GUI)
- High-quality graphical output (1-D, 2-D, 3-D, transient)
- Optimized for large computations
- · Coupling of simulation tools

Remaining TCAD challenges:

- · Limited variety, flexibility, hierarchy, interaction of models
- · Code enhancements costly, controlled by developer
- · Needed computations are huge
- · Little accountability in comparison to experiment

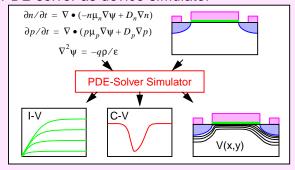
Challenge 1: Process and Device Physics

Process Physics:

- Major process/material changes (e.g., copper, SOI)
- Bulk physics inadequate: poly-crystal grain, atomic physics
- Process history effects (e.g., damage, passivation)
- Cross-wafer/cross-reactor variation

Device Physics:

- Small-geometry/high-field effects:
 - hot electron transport, punch-through, avalanche multiplication, drain-induced barrier lowering, oxide and junction breakdown, leakage currents, grain-size effects, discrete dopant effects, etc.
- Microwave effects
- Quantum effects:
 - gate oxide tunneling, inversion layer quantization, quantum transport, transconductance degradation, etc.


Challenge 1: Solution

Challenge: Conventional approach to implementing P&D models can't keep up with physics

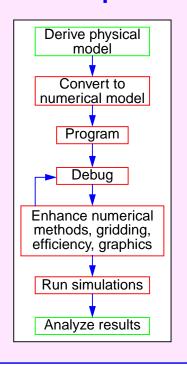
Requirements:

- · variety: models must span relevant physics
- · flexibility: ability to modify models as desired
- hierarchy: encapsulate physics at different length/time scales
- · interaction: coupling of models in adjoining regions

Solution: Use PDE solver as device simulator

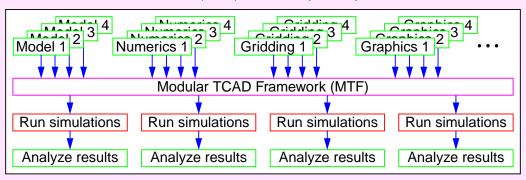
PDE Models for Electronic Devices

Complexity, Comp. Cost	Classical	Quantum- Corrected	Quantum
Low	Drift-diffusion	Density-g radient	Schrödinger , Transfer matr ix
Moderate	Energy balance , Hydrodynamic	Quantum EB , Quantum HD	Density matr ix, Wigner function
High	Boltzmann transport equation	Quantum Boltz- mann equation	Green's functions
Micro wave, Optoelectronic	Substitute Maxw ell's equations f or Poisson equation		


Challenge 2: TCAD Software Development

Developing TCAD tools is difficult:

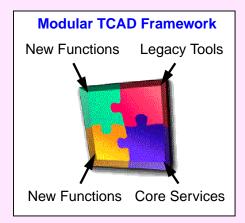
- · Distance to results analysis is long
- Few coding short-cuts are available
- Difficult for experts to "plug in"
- · Little collaboration outside of groups
- · No standard for tool interaction


TCAD tools are "stupid"

- Don't learn from experience
- Rudimentary interaction with users

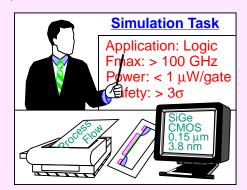
Challenge 2: Solution

Modular TCAD framework (MTF) as development platform


- Short distance from concept to results
- Encourages collaboration, code sharing
- Experts can "plug in" their expertise
- · Code not controlled by one developer/company
- Tool interaction (e.g., process, device) is standardized
- · Intelligent features can be implemented

MTF: Tool Developer Interests

- · Plenty of work
- Preserve intellectual property
- Easy to plug into
- New facilities for existing tools
- Collaboration-at-a-distance
- · Attractive to users


Additional tool vendor interests:

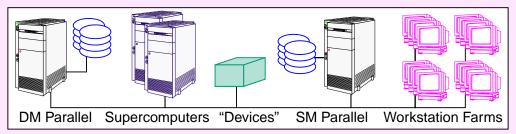
- Protect existing products and customer base
- · Add value that people will pay for

MTF: User Interests

- · Greater functionality
- Better accuracy
- Fewer bugs
- · Better ease of use
- More flexibility to modify models, devices, tests
- Bigger problems, more robustness, faster execution
- Platform independence
- · Better technical support
- · Low initial investment
- High-level functionality using "Artificial intelligence"

MTF: Artificial Intelligence

Expert System Description	Implementation	Rank
Speech recognition	Commercial	3
Natural language and math expression interpretation	Commercial	2
Estimation of device structure or operation	Data mining ES	1
Estimation of computational resources needed	Data mining ES	1
Selection of optimal physical model(s)	Data mining ES	2
Selection of optimal gridding, numerics, solution algorithms	Data mining ES	2
Correction of non-convergence, excess error, device malfunction	Rule-based ES	2
Interactive visualization	Commercial/NASA	1
Gesture recognition	Commercial/NASA	3
Extraction of default and user-defined results/parameters	Rule-based ES	3
Optimization of device according to specified constraints	Rule-based ES	1
Default and user-specified interaction between tools	Rule-based ES	1
Analyze discrepancies between experiment, simulation	Rule-based ES	2
Tune physical model and RSMs using experimental data	Rule-based ES	3
Apply context-sensitive user and default preferences	Rule-based ES	3

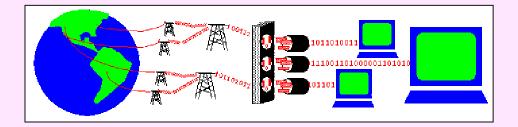

Note: ES = expert system; Rank = relative importance

Challenge 3: Computational Power

Observations:

- Many TCAD computations of interest beyond feasibility
- Uncountable CPU cycles are wasted "bit-flips"

Solution: Link massive numbers of heterogeneous, distributed compute resources as virtual supercomputer; provide simple access

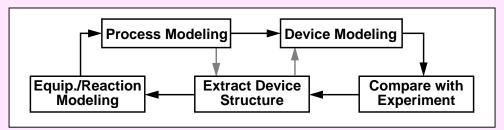


Projects underway:

- NSF: NPACI
- NASA: Information Power Grid (IPG)

IPG: Benefits/Goals

- De-couple computational resources from intellectual resources
- · Minimize cost of supercomputing
- · Provide transparent access
- Enable collaboration-at-a-distance
- Provide web interface for users, developers



Challenge 4: TCAD Software Verification

Little accountability in TCAD for simulation error

- Process tool developer/user blames device simulation
- Device tool developer/user blames device structure
- Both blame inaccurate measurements/fabrication

Solution: Closed-Loop Device R&D:

Only as good as weakest link!

Activities of NASA Ames NanoScience IPT

Semiconductor Device Modeling

- Semiclassical Electronics (PDE solver approach)
- Nanostructure Quantum Electronics
- · Atomic Chain Electronics
- · Quantum Optoelectronics

Equipment/Reactor Modeling

- Virtual reactors (including PDE solver approach)
- · Microtopography evolution
- · Coupling of above
- Gas composition sensor on a chip

Computational Chemistry

· Reaction pathways, rates, kinetics database

Web-Based Process and Device Modeling

Summary

Consequences of lagging TCAD capabilities

- Semiconductor R&D much more expensive
- Evolutionary advancement delayed
- Innovative advancement very difficult

TCAD Challenges and Solutions

- TCAD physics complicated, changing: PDE solver approach
- TCAD software development is difficult: TCAD framework
- Huge computational power needed: Information Power Grid
- Little TCAD verification: Close the loop, improve fab hardware